
2020-09-17

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D. P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

class data structures

2
class data structures

Outline

• In this lesson, we will:

– Introduce the 3-body problem and a simulation thereof

– Introduce the class keyword and member variables

– Show how to declare and initialize instances of classes or objects

– Describe how to access and manipulate the member variables

– Describe passing objects as arguments to functions

– Discuss why using pass by reference is appropriate for objects

3
class data structures

The three-body problem

• Suppose we are trying to simulate the three-body problem for stars:

– Each star has:

• A position x, y, and z

• A velocity vx, vy, vz

• A mass m

• We could store arrays for each of these:

double rigil_kentaurus_position[3]; // km

double rigil_kentaurus_velocity[3]; // km/h

double rigil_kentaurus_mass; // kg

// Same for 'toliman' and 'proxima_centauri'

Wikipedia User:Skatebiker

4
class data structures

Classes

• The three local variables storing information about Rigel Kentaurus
are all related

– Just like an array and capacity are related

– We would like to like to group this information together

// Class declaration

class Body;

// Class definition

class Body {

 public:

 // Member variables

 double position_[3]; // km

 double velocity_[3]; // km/h

 double mass_; // kg

};

This class contains all information
necessary to describe one star for the
problem at hand…

2020-09-17

2

5
class data structures

Classes

• As a general rule,

– Class names will be capitalized

– Member variable will be suffixed with an underscore

• This is only a naming convention and is not required

– Recall that reserved identifiers are prefixed with an underscore
or contain a sequence of two underscores

// Class definition

class Body {

 public:

 // Member variables

 double position_[3]; // km

 double velocity_[3]; // km/h

 double mass_; // kg

};

6
class data structures

Classes

• With this declaration, Body now refers to a type like int or double

– Rather than just one value associated with any instance

– Each instance has two vectors of capacity three, and one double

// Class declaration

class Body;

// Class definition

class Body {

 public:

 // Member variables

 double position_[3]; // km

 double velocity_[3]; // km/h

 double mass_; // kg

};

7
class data structures

Accessing member variables

• We can declare a local variable to be an instance of this class:
// Class declarations

class Body;

// Function declarations

int main();

// Class definitions...

// Function definitions

int main() {

 Body earth{ {149.6e6, 0.0, 0.0}, {0.0, 107e3, 0.0}, 5.972e24 };

 return 0;

}

An instance of a class is
also described as an object

class Body {
 public:
 // Member variables
 double position_[3]; // km
 double velocity_[3]; // km/h
 double mass_; // kg
};

position_ earth

velocity_

mass_

1.496e8
0.0
0.0
0.0

1.07e3
0.0
5.972e24

8
class data structures

Accessing member variables

• We access the member variables using the . operator

– The left-hand operand must be an object

– The right-hand operand must be the identifier of a member variable

int main() {

 Body earth{ {1.496e8, 0.0, 0.0}, {0.0, 107e3, 0.0}, 5.972e24 };

 std::cout << earth.mass_ << std::endl;

 std::cout << earth.position_[0] << std::endl;

 return 0;

}

– The memory for these seven doubles is
deallocated with the function returns

1.496e8 position_ earth
0.0
0.0
0.0 velocity_
1.07e5
0.0
5.972e24 mass_

Output:
 5.972e+24

 1.496e+08

2020-09-17

3

9
class data structures

Assigning member variables

• You can also manipulate what is stored in the member variables:
int main() {

 Body earth{ {1.496e8, 0.0, 0.0}, {0.0, 107e3, 0.0}, 5.972e24 };

 // Approximate the distance the body moves in 0.1 h (= 6 min)

 for (std::size_t k{0}; k < 3; ++k) {

 earth.position_[k] += 0.1*earth.velocity_[k];

 }

 return 0;

} k
1.496e8 position_

0.0
0.0 velocity_
1.07e5
0.0
5.972e24 mass_

1.07e4 0.0

0 1 2 3

10
class data structures

Objects as local variables

• The default initialization and assignment are the same:
int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 Body mars{ {0, 249.2e6, 0}, { 86.8e3, 0, 0}, 6.39e23 };

 Body tmp{ earth }; // All entries are copied over from 'earth'

 tmp = mars; // All entries from 'mars' are copied over

 tmp.mass_ = 0.0; // Sets only the mass of 'tmp' to 0.0

 return 0;

}

position_ tmp

velocity_

mass_
position_ mars

velocity_

mass_
position_ earth

velocity_

mass_

11
class data structures

Objects as arguments

• Objects can be passes as arguments:
double speed(Body a);

double speed(Body a) {

 return std::sqrt(a.velocity_[0]*a.velocity_[0]

 + a.velocity_[1]*a.velocity_[1]

 + a.velocity_[2]*a.velocity_[2]);

}

12
class data structures

Objects as arguments

• Objects can be passes as arguments:
int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 double earth_speed{ speed(earth) };

 // 1 km/h = 0.000172603 mi/s

 double const KM_H_TO_MI_S{ 0.000172603 };

 std::cout << "That's orbiting at "

 << (KM_H_TO_MI_S*earth_speed)

 << " miles a second, so it's reckoned."

 << std::endl; // Ref: Monty Python's "Galaxy Song"

 return 0;

} Output:
 That's orbiting at 18.4685 miles a second, so it's reckoned,

2020-09-17

4

13
class data structures

Objects as arguments

• The function main() has two local variables:
int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 double earth_speed{ speed(earth) };

 // 1 km/h = 0.000172603 mi/s

 std::cout << "That's orbiting at "

 << (0.000172603*earth_speed)

 << " miles a second, so it's reckoned."

 << std::endl; // Ref: Monty Python's "Galaxy Song"

 return 0;

}

earth_speed
position_ earth

velocity_

mass_

14
class data structures

Objects as arguments

• When speed(…) is called, the argument is copied to the parameter

int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 double earth_speed{ speed(earth) };

position_ a

velocity_

mass_
earth_speed
position_ earth

velocity_

mass_

double speed(Body a) {
 return std::sqrt(a.velocity_[0]*a.velocity_[0]
 + a.velocity_[1]*a.velocity_[1]
 + a.velocity_[2]*a.velocity_[2]);
}

15
class data structures

Objects as arguments

• The result is calculated put back onto the call stack:
int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 double earth_speed{ speed(earth) };

107000
earth_speed
position_ earth

velocity_

mass_

double speed(Body a) {
 return std::sqrt(a.velocity_[0]*a.velocity_[0]
 + a.velocity_[1]*a.velocity_[1]
 + a.velocity_[2]*a.velocity_[2]);
}

16
class data structures

Objects as arguments

• The returned value is copied to earth_speed and subsequently used

int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 double earth_speed{ speed(earth) };

 // 1 km/h = 0.000172603 mi/s

 std::cout << "That's orbiting at "

 << (0.000172603*earth_speed)

 << " miles a second, so it's reckoned."

 << std::endl; // Ref: Monty Python's "Galaxy Song"

 return 0;

}

107000 earth_speed
position_ earth

velocity_

mass_

2020-09-17

5

17
class data structures

Return values

• Return values behave similarly:
Body center_of_mass(Body a, Body b);

Body center_of_mass(Body a, Body b) {

 Body com{ {0.0,0.0,0.0}, {0.0,0.0,0.0}, a.mass_ + b.mass_ };

 for (std::size_k{0}; k < 3; ++k) {

 com.position_[k] = (a.mass_/com.mass_)*a.position_[k]

 + (b.mass_/com.mass_)*b.position_[k];

 com.velocity_[k] = (a.mass_/com.mass_)*a.velocity_[k]

 + (b.mass_/com.mass_)*b.velocity_[k];

 }

 return com;

}

18
class data structures

Return values

• The returned value is copied to earth_mars and subsequently used
int main() {

 Body earth{ {149.6e6, 0, 0}, {0, 107.0e3, 0}, 5.972e24 };

 Body mars{ {0, 249.2e6, 0}, { 86.8e3, 0, 0}, 6.39e23 };

 Body earth_mars{ center_of_mass(earth, mars) };

 std::cout << earth_mars.mass_ << std::cout;

 std::cout << "(" << earth_mars.position_[0]

 << ", " << earth_mars.position_[1]

 << ", " << earth_mars.position_[2]

 << ")" << std::endl;

 std::cout << speed(earth_mars) << std::endl;

 return 0;

} Output:
 6.611e+24
 (1.3514e+08, 2.40869e+07, 0)
 97021.1

com

b

a

earth_mars

mars

earth

earth_mars

mars

earth

19
class data structures

Passing by reference and not value

• Problem:

– Every time an object is passed as an argument,

 there is potentially a significant amount of copying involved

• Solution:

– Use pass by reference or pass by constant reference

20
class data structures

Passing by reference and not value

• For example:
Body center_of_mass(Body const &a, Body const &b);

Body center_of_mass(Body const &a, Body const &b) {

 Body com{{0,0,0}, {0,0,0}, a.mass_ + b.mass_};

 for (std::size_k{0}; k < 3; ++k) {

 com.position_[k] = (a.mass_/com.mass_)*a.position_[k]

 + (b.mass_/com.mass_)*b.position_[k];

 com.velocity_[k] = (a.mass_/com.mass_)*a.velocity_[k]

 + (b.mass_/com.mass_)*b.velocity_[k];

 }

 return com;

}

These refer to the actual arguments
 – no copies are made

The return value is still returned by value

2020-09-17

6

21
class data structures

Summary

• Following this lesson, you now

– Are aware of the class keyword

– Know how to declare and initialize objects

• Instances of classes are also called objects

– You know how to access and manipulate the member variables

– Know how to pass objects to functions and how pass by value works

– Understand that pass by reference works the same way as for
primitive data types

22
class data structures

References

[1] cplusplus.com

 http://www.cplusplus.com/doc/tutorial/classes/

[2] Wikipedia
 https://en.wikipedia.org/wiki/Class_(computer_programming)

23
class data structures

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
class data structures

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

